
Table of Contents
Running Jobs with PBS...1

Portable Batch System (PBS): Overview...1
Job Accounting..3
Job Accounting Utilities..4
Multiple GIDs and Charging to a specific GID...6
Commonly Used PBS Commands...7
Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line.....10
New Features in PBS..12
Checkpointing and Restart..14
PBS Environment Variables..15
PBS Scheduling Policy..16
PBS exit codes..19

Front-End Usage Guidelines...21
Pleiades Front-End Usage Guidelines...21
Columbia Front-End Usage Guidelines...23

PBS on Pleiades...25
Overview..25
Queue Structure..26
Mission Shares Policy on Pleiades..28
Resources Request Examples..31
Default Variables Set by PBS..34
Sample PBS Script for Pleiades..35
Pleiades devel Queue..37

PBS on Columbia...39
Overview..39
Resources Request Examples..40
Default Variables Set by PBS..42
Sample PBS Script for Columbia...43

Troubleshooting PBS Jobs...44
Common Reasons for Being Unable to Submit Jobs..44
Common Reasons Why Jobs Won't Start...46
Using pdsh_gdb for Debugging Pleiades PBS Jobs..48

Effective Use of PBS..49
Streamlining File Transfers from Pleiades Compute Nodes to Lou...........................49
Avoiding Job Failure from Overfilling /PBS/spool..50
Running Multiple Serial Jobs to Reduce Walltime...51
Checking the Time Remaining in a PBS Job from a Fortran Code...........................54

Running Jobs with PBS

Portable Batch System (PBS): Overview

All NAS facility supercomputers use the Portable Batch System (PBS) from Altair for batch
job submission, job monitoring, and job management. Note that different systems may use
different versions of PBS, so the available features may vary slightly from system to
system.

Batch Jobs

Batch jobs run on compute nodes, not the front-end nodes. A PBS scheduler allocates
blocks of compute nodes to jobs to provide exclusive access. You will submit batch jobs to
run on one or more compute nodes using the qsub command from an interactive session
on one of the front-end nodes (such as, pfe[1-12], bridge[1-2] for Pleiades or cfe2 for
Columbia).

Normal batch jobs are typically run by submitting a script. A "jobid" is assigned after
submission. When the resources you request become available, your job will execute on
the compute nodes. When the job is complete, the PBS standard output and standard error
of the job will be returned in files available to you.

Take carefully note when porting job submission scripts from systems outside of the NAS
environment or between the Pleiades and Columbia supercomputers you may need to
make changes to your existing scripts to make them work properly on these systems.

Interactive Batch Mode

PBS also supports an interactive batch mode, using the qsub -I, where the input and output
is connected to the user's terminal, but the scheduling of the job is still under control of the
batch system.

Queues

The available queues on different systems vary, but all typically have constraints on
maximum wall-time and/or the number of CPUs allowed for a job. Some queues may also
have other constraints or be restricted to serving certain users or groups. In addition, to
ensure that each NASA mission directorate is granted their allocated share of resources at
any given time, mission directorate limits (called "shares") are also set on Pleiades and
Columbia.

Running Jobs with PBS 1

See man pbs for more information.

Portable Batch System (PBS): Overview 2

Job Accounting

DRAFT

This article is being reviewed for completeness and technical accuracy.

Usage on the HECC machines at NAS, except for the front-end machines, is charged.

Starting May 1, 2011, the accounting unit is the Standard Billing Unit (SBU). The SBUs
charged to a PBS job running on the compute node(s) is:

 SBU charged = Wall_Clock_Hours_Used * Number of MAUs * SBU Rate

where the MAU represents the minimum allocatable unit of resources available through
PBS. On Pleiades, an MAU is a node (with 8 cores for Harpertown and Nehalem-EP or 12
cores for Westmere in each node). On Columiba, an MAU has 4 cores. Charging is based
on the number of MAUs allocated to a job, not how many cores are actually used during
run-time. Once a user is allocated the resources, that user has exclusive access to those
resources until the user's job completes or exceeds its requested wall-clock time.

The SBU rate for each of the NAS processors is outlined below:

Host SBU Rate (per MAU)
Pleiades Westmere-EP nodes 1.00
Pleiades Nehalem-EP nodes 0.80
Pleiades Harpertown nodes 0.45
Columbia Itanium-2 0.18

In addition, charges on Columbia apply both to jobs that run successfully and those that are
interrupted. Interrupted jobs are charged by taking the elapsed job time in hours,
subtracting 1 hour, multiplying that by the number of MAUs used, and then deducting the
resulting amount from the allocation. (Users are encouraged to have their applications
checkpoint roughly every hour.)

In the near future, interruptions on Pleiades will be handled in a similar manner.

For example:

If you have a 24-hour job on Columbia that requires 16 MAUs (i.e., 64 cores), It has run for
12 hours and the system crashes. The accounting system will take the 12 hours, subtract 1
hour, and compute the SBUs (11 hours X 16 MAUs x 0.18 = 31.68 SBUs), which will then
be subtracted from your allocation for your GID.

Job Accounting 3

Job Accounting Utilities

DRAFT

This article is being reviewed for completeness and technical accuracy.

The job accounting utilities "acct_ytd" and "acct_query" can be used to obtain resource
usage and charging information about your account, the accounts of other users on your
project, and the project as a whole. Daily usage totals for each account are available for the
current operational period.

acct_ytd

The "acct_ytd" command provides a year-to-date summary of accounting information
for groups to which a user belongs. It will normally be accurate as of midnight the
previous night, when accounting was last run.

A number of parameters can be used with "acct_ytd", but the simpliest way is to type
"acct_ytd" on a host without any parameters. This produces a line of output for each
project you have access to on that host.

%acct_ytd
You can also specify the host group and/or a specific GID (for example, a0800).

%acct_ytd -cpleiades a0800 %acct_ytd -ccolumbia a0800

To find the allocations and usages of all your GIDs on all hosts, use the -call flag.

%acct_ytd -call
See man acct_ytd on Pleiades and Columbia for more information.

•

acct_query

The "acct_query" command searches and displays process-level billing records. This
means that while totals over a period or for each day in a period are possible, you
can also obtain detailed billing records for each process run in a period.

For example, to see all the SBU usage, beginning June 1, 2010, ending July 1, 2010,
for all projects and on all hosts by user zsmith:

%acct_query -b06/01/10 -e07/01/10 -pall -call -uzsmith
To see the current SBU usage for the operational year 2010 (defined as May 1, 2010
to May 1, 2011 for most mission directorates) for all projects and on all hosts by user
zsmith:

%acct_query -y10 -pall -call -uzsmith

•

Job Accounting Utilities 4

Eligible hostnames include:

columbia211.
columbia222.
columbia233.
columbia244.
pbs15.
pleiades (for Harpertown nodes)6.
pleiades_N (for Nehalem nodes)7.
pleiades_W (for Westmere nodes)8.

See man acct_query on Pleiades and Columbia for more information.

Job Accounting Utilities 5

Multiple GIDs and Charging to a specific GID

DRAFT

This article is being reviewed for completeness and technical accuracy.

Each approved project is assigned a project id (GID). Members of a GID are authorized to
use the resources allocated to that GID. For those users who have access to multiple GIDs,
be aware that only one of those GIDs is considered your default.

Use the "groups" command to find which GIDs you are a member of. The following example
shows that user zsmith is a member of the groups a0800, a0907, all, and e0720.

%groups zsmith
zsmith : a0800 a0907 all e0720

The first GID from the "groups" list should be your default GID. This can be verified through
the /etc/passwd file. For example, the /etc/passwd file has an entry for user zsmith with the
GID 20800 (which is the same as a0800, his default GID).

%grep zsmith /etc/passwd
zsmith:x:6666:20800:Z. Smith,,650-604-4444,:/u/zsmith:/bin/csh

When you use resources on the compute nodes through PBS jobs, SBUs are deducted
from your default GID unless you specify otherwise. To charge resource usage to an
alternative GID for a batch job, you can use the PBS flag "-W group_list=account" either in
your script or on the "qsub" command line. For example:

#PBS -W group_list=a0907
or

%qsub -W group_list=a0907

Multiple GIDs and Charging to a specific GID 6

Commonly Used PBS Commands

DRAFT

This article is being reviewed for completeness and technical accuracy.

man pbs provides a list of all PBS commands. The four most commonly used PBS
commands, qsub, qstat, qdel and qhold, are briefly described below.

qsub

Submit a batch job to the specified queue using a script

%qsub -q queue_name job_script
Common possibilities for queue_name at NAS include normal, debug, long,
and low. When queue_name is omitted, the job is routed to the default queue,
which is the normal queue.

♦

Submit an interactive PBS job

%qsub -I -q queue_name -lresource_list

No job_script should be included when submitting an
interactive PBS job.
The resource_list typically specifies the number of nodes, cpus, amount of
memory and walltime needed for this job. The following example shows a
request for Pleides with 2 nodes, 8 cpus per node, and a walltime limit of 3
hours.

%qsub -I -lselect=2:ncpus=8,walltime=3:00:00
See man pbs_resources for more information on what resources can be
specified. If -lresource_list is omitted, the default resources for the specified
queue is used. When queue_name is omitted, the job is routed to the default
queue, which is the normal queue.

♦

•

qstat

Display queue information

%qstat -Q queue_name
%qstat -q queue_name
$qstat -fQ queue_name
These commands display in different formats all the queue available on the
systems, their constraints and status. The queue_name is optional.

♦

Display job status♦

•

Commonly Used PBS Commands 7

Display all jobs in any status (running, queued, held)
%qstat -a

◊

Display all running or suspended jobs
%qstat -r

◊

Display the execution hosts of the running jobs
%qstat -n

◊

Display all queued, held or waiting jobs
%qstat -i

◊

Display jobs that belong to the specified user
%qstat -u user_name

◊

Display any comment added by the administrator or scheduler
%qstat -s
This option is typically used to find clues of why a job has not started
running.

◊

Display detailed information about a specific job
%qstat -f job_id

◊

Display status informaton for finished jobs (within the past 7 days)
%qstat -xf job_id
%qstat -xu user_id

This option is only available in newer version of PBS, which has been
installed on Pleiades, but not on Columbia.

◊

Some of these flags can be combined when checking the job
status.

qdel

Delete a job

%qdel job_id

•

qhold

Hold a job

%qhold job_id
Only the job owner or a system administrator with su or root privilege can place a
hold on a job. The hold can be released using the "qrls" command.

•

For more detailed information on each command, see their corresponding man pages.

Commonly Used PBS Commands 8

The devel queue on Pleiades is served by a non-default PBS server, pbspl3, and the syntax
for qsub, qstat, and qdel jobs in the devel queue needs to include pbspl3. Read this article
for more information.

Commonly Used PBS Commands 9

http://www.nas.nasa.gov/hecc/support/kb/entry/290
http://www.nas.nasa.gov/hecc/support/kb/entry/290

Commonly Used QSUB Options in PBS Scripts or in the
QSUB Command Line

DRAFT

This article is being reviewed for completeness and technical accuracy.

The "qsub" options can be read from the PBS directives of a PBS job_script or from the
qsub command line. For a complete list of available options, see man qsub. The more
commonly used ones are listed below.

-S shell_name
Specifies the shell that interprets the job script

-V
Declares that all environment variables in the qsub command's environment are to
be exported to the batch job

-v variable_list
Lists environment variables to be exported to the job

-q queue_name
Defines the destination of the job. The common possibilities for queue_name on
Pleides and Columbia include normal, debug, long, and low

The devel queue on Pleiades is served by a non-default PBS server, pbspl3, and the
syntax for qsub jobs to the devel queue needs to include pbspl3. Read this article for
more information.

-l resouce_list
Specifies the resources that are required by the job and establishes a limit to the
amount of resources that can be consumed. Commonly used resource items are
slect, ncpus, walltime, and memory. See man pbs_resources for a complete list of
available resources.

-e path
Directs the standard error output produced by the request to the stated file path

-o path
Directs the standard output produced by the request to the stated file path.

-j join
Declares that the standard output and error streams of the job should be merged
(joined). The values for join can be:

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 10

http://www.nas.nasa.gov/hecc/support/kb/entry/290
http://www.nas.nasa.gov/hecc/support/kb/entry/290

oe standard output and error streams are merged in the standard output file
eo standard error and output streams are merged in the standard error file

-m mail_options
Defines the set of conditions under which the execution server will send mail
message about the job. See man qsub for a list of mail_options.

-N name
Declares a name for the job

-W addl_attributes
Allows for the specification of additional job attributes
The most common ones are
-W group_list=g_list specifies the group the job runs under
-W depend=afterany:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with any exit status
-W depend=afterok:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with no errors

-r y|n
Declares whether the job is rerunnable

The top of a PBS job_script contains PBS directives, each of which begins with the string
"#PBS". Here is an example for use on Pleiades.

#PBS -S /bin/csh
#PBS -V
#PBS -q long
#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har,walltime=24:00:00
#PBS -j oe
#PBS -o /nobackup/zsmith/my_pbs_output
#PBS -N my_job_name
#PBS -m e
#PBS -W group_list=a0907
#PBS -r n

The resources and/or attributes set using options to the "qsub"
command line override those set in the directives in the PBS
job_script.

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 11

New Features in PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

Some of the new features relevant to users are listed below:

Estimate job start times (version 10.4)

PBS can estimate the start time for jobs. To show the estimated start times (in the
Est Start field), use

%qstat -T

This feature is still under testing by NAS system
administrators and is not yet available to users.

•

Show the processor model (version 10.4)

Processor model (for example, Harpertwon, Nehalem-EP, and Westmere-EP) can
be displayed with

%qstat -W o=+model

•

Show job history (version 10.1)

Use the PBS "-x" option to obtain job history information, including the submission
parameters, start/end time, resources used, etc., for jobs that finished executation,
were deleted or are still running.

The job history for finished jobs is preserved for a specific duration. After the duration
has expired, PBS deletes the job history information and it is no longer available.
Currently, the duration is set to be 7 days on Pleiades.

%qstat -fx job_id

•

Advance and Standing reservations (version 9.2)

An advance reservation can be made for a set of resources for a specified time. The
reservation is only available to a specific user or group of users.

A standing reservation is an advance reservation which recurs at specified times. For
example, the user can reserve 8 nodes every Wednesday from 5pm to 8pm, for the
next month.

•

New Features in PBS 12

The reservation is made using the "pbs_rsub" command. PBS either confirms that
the reservation can be made, or rejects the request. Once he reservation is
confirmed, PBS creates a queue for the reservation's jobs. Jobs are then submitted
to this queue.

The following example shows the creation of an advance reservation asking for 1
node with 8 cpus, a start time of 11:30 and a duration of 30 minutes.

%pbs_rsub -R 1130 -D 00:30:00 -l select=1:ncpus=8

A reservation can be deleted using the "pbs_rdel" command.

For more information, see man pbs_rsub and man pbs_rdel.

Requests to use advance and standing reservations must be
approved by NAS management. Only staff with special privilege
can create the reservations for users.

New Features in PBS 13

Checkpointing and Restart

DRAFT

This article is being reviewed for completeness and technical accuracy.

None of the NAS HEC systems has an automatic checkpoint capability made available by
the operating system. For jobs that need lots of resources and/or long wall-time, you should
have a checkpoint/restart capability implemented in the source code or job script.

PBS automatically restarts unfinished jobs after system crashes. If you do not want PBS to
restart your job, make sure to add the following in your PBS script:

#PBS -r n

Checkpointing and Restart 14

PBS Environment Variables

DRAFT

This article is being reviewed for completeness and technical accuracy.

There are a number of environment variables provided to the PBS job. Some are taken
from the user's environment and carried with the job. Others are created by PBS. Still
others can be explicitly created by the user for exclusive use by PBS jobs. All PBS-provided
environment variable names start with the characters "PBS_". Some are then followed by a
capital O ("PBS_O_") indicating that the variable is from the job's originating environment
(i.e. the user's).

The following lists a few useful PBS environment variables.

PBS_O_WORKDIR
contains the name of the directory from which the user submitted the PBS job

PBS_O_PATH
value of PATH from submission environment

PBS_JOBID
contains the PBS job identifier

PBS_JOBDIR
pathname of job-specific staging and execution directory

PBS_NODEFILE
contains a list of vnodes assigned to the job

TMPDIR
The job-specific temporary directory for this job
defaults to /tmp/pbs.job_id on the vnodes

PBS Environment Variables 15

PBS Scheduling Policy

DRAFT

This article is being reviewed for completeness and technical accuracy.

This article gives a simplified explanation of the PBS scheduling policy on Pleiades and
Columbia

PBS scheduling policies change frequently, in response to varying demands and
workloads. The current policy (March 1, 2011), simplified, states that jobs are sorted in the
following order: current mission directorate CPU use, job priority, queue priority, and job
size (wide jobs first).

In each scheduling cycle, PBS examines the jobs in sorted order, starting a job if it can. If
the job cannot be started immediately, it is either scheduled around or simply bypassed for
this cycle.

There are numerous reasons why jobs won't start, such as:

The queue is at its running job limit•
You are at your running job limit•
The queue is at its CPU limit•
The mission directorate is at its CPU share limit and the job cannot borrow from
another mission

•

Not enough CPUs are available•

Notice that a high-priority job might be blocked by some limit, while a lower priority job, from
a different user or asking for fewer resources, might not be blocked.

If your job is waiting in the queue, use the following commands to get some information
about why it has not started running.

pfe1% qstat -s jobid
or
pfe1% qstat -f jobid | grep -i comment

On Pleiades, output from the following command shows the amount of resources (broken
down into Harpertown, Nehalem, and Westmere processors) used and borrowed by each
mission directorate, and the resources each mission is waiting for:

pfe1% /u/scicon/tools/bin/qs

The following command provides the order of jobs that PBS schedules to start at the
current scheduling cycle. It also provides information regarding processor type(s), mission,

PBS Scheduling Policy 16

and job priority:

pfe1% qstat -W o=+model,mission,pri -i
The policy described above could result in a large, high-priority job being blocked forever by
a steady stream of smaller, low-priority jobs. To prevent jobs from languishing in the queues
for an indefinite time, PBS reserves resources for the top N jobs (currently, N is 4), and
doesn't allow lower priority jobs start if they would delay the start time of one of the top job
("backfilling"). Additional details are given below.

PBS Sorting Order

Mission shares

Each NASA mission directorate is allocated a certain percentage of the CPUs in the
system. (See Mission Shares Policy on Pleiades .) A job cannot start if that action
would cause the mission to exceed its share, unless another mission is using less
than its share and has no jobs waiting. In this case, the high-use mission can
"borrow" CPUs from the lower-use mission for up to a specified time (currently,
max_borrow is 4 hours).

So , if the job itself needs less than max_borrow hours to run, or if a sufficient
number of other jobs from the high-use mission will finish within max_borrow hours
to get back under its mission share, then the job can borrow CPUs.

When jobs are sorted, jobs from missions using less of their share are picked before
jobs from missions using more of their share.

•

Job priority

Job priority has three components. First is the native priority (the -p parameter to
qsub or qalter). Added to that is the queue priority. If the native priority is 0, then a
further adjustment is made based on how long the job has been waiting for
resources. Waiting jobs get a "boost" of up to 20 priority points, depending on how
long they have been waiting and which queue they are in.

This treatment is modified for queues assigned to the Exploration Systems Mission
Directorate (ESMD). For those queues, job priority is set by a separate set of policies
controlled by ESMD management.

•

Queue priority

Some queues are given higher or lower priorities than the default. (Run "qstat -Q" to
get current values.) Note that because the mission share is the most significant sort
criterion, job and queue priorities have little effect mission-to-mission.

•

Job size•

PBS Scheduling Policy 17

http://www.nas.nasa.gov/kb/Mission-Shares-Policy-on-Pleiades_168.html

Jobs asking for more CPUs are favored over jobs asking for fewer. The reasoning is
that, while it is easier for narrow jobs to fill in gaps in the schedule, wide jobs need
help collecting enough CPUs to start.

Backfilling

As mentioned above, when PBS cannot start a job immediately, if it is one of the first N
such jobs, PBS sets aside resources for the job before examining other jobs. That is, PBS
looks at the currently running jobs to see when they will finish (using the wall-time
estimates). From those finish times, PBS decides when enough resources (such as CPUs,
memory, mission share, and job limits) will become available to run the top job.

PBS then creates a virtual reservation for those resources at that time. Now, when PBS
looks at other jobs to see if they can start immediately, it also checks whether starting the
job would collide with one of these reservations. Only if there are no collisions will PBS start
the lower priority jobs.

This description applies to both Pleiades and Columbia, although the specific queues,
priorities, mission percentages, and other elements differ between the two systems.

PBS Scheduling Policy 18

PBS exit codes

DRAFT

This article is being reviewed for completeness and technical accuracy.

Do we need to have more details for some of the < 0 exit codes? - rh

The PBS exit value of a job may fall in one of four ranges:

X = 0 (= JOB_EXEC_OK)

This is a PBS special return value indicating that the job executed successfully

•

X < 0

This is a PBS special return value indicating that the job could not be executed.
These negative values are listed below:

-1 = JOB_EXEC_FAIL1

job exec failed, before files, no retry

♦

-2 = JOB_EXEC_FAIL2

job exec failed, after files, no retry

♦

-3 = JOB_EXEC_RETRY

job exec failed, do retry

♦

-4 = JOB_EXEC_INITABT

job aborted on MOM initialization

♦

-5 = JOB_EXEC_INITRST

job aborted on MOM init, checkpoint, no migrate

♦

-6 = JOB_EXEC_INITRMG

job aborted on MOM init, checkpoint, ok migrate

♦

-7 = JOB_EXEC_BADRESRT

job restart failed

♦

•

PBS exit codes 19

-8 = JOB_EXEC_GLOBUS_INIT_RETRY

Init. globus job failed. do retry

♦

-9 = JOB_EXEC_GLOBUS_INIT_FAIL

Init. globus job failed. no retry

♦

0 <= X < 128 (or 256 depending on the system)

This is the exit value of the top process in the job, typically the shell. This may be the
exit value of the last command executed in the shell or the .logout script if the user
has such a script (csh).

•

X >=128 (or 256 depending on the system)

This means the job was killed with a signal. The signal is given by X modulo 128 (or
256). For example an exit value of 137 means the job's top process was killed with
signal 9 (137 % 128 = 9).

•

PBS exit codes 20

Front-End Usage Guidelines

Pleiades Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end systems pfe[1-12] and bridge[1,2] provide an environment that allows you to
get quick turnaround while performing the following:

file editing•
compiling•
short debugging and testing session•
batch job submission to the compute systems•

Bridge[1,2], with 4 times the memory on pfe[1-12] and better interconnects, can also be
used for the following two functions:

Post processing

These nodes have 64-bit versions of IDL, Matlab, and Tecplot installed and have 64
GB of memory (4 times the amount of memory on pfe[1-12]). The bridge nodes will
run these applications much faster than on pfe[1-12].

1.

File transfer between Pleiades and Columbia or Lou

Note that both the Pleiades Lustre filesystems (/nobackupp[10-70]) and the
Columbia CXFS filesystems (/nobackup1[1-h], /nobackup2[a-i]) are mounted on the
bridge nodes.

To copy files between the Pleiades Lustre and Columbia CXFS filesystems, log in to
bridge[1,2] and use the cp command to perform the transfer. The 10 Gigabit Ethernet
(GigE) connections on the two bridge nodes are faster than the 1 GigE used on
pfe[1-12], therefore, file transfer out of Pleiades is improved when using the bridge
nodes.

File transfers from bridge[1,2] to Lou[1,2] will go over the 10 GigE interface by
default. The commands scp, bbftp, and bbscp are available to do file transfers. Since
bbscp uses almost the same syntax as scp, but performs faster than scp, we
recommend using bbscp over scp in cases where you do not require the data to be
encrypted when sent over the network.

2.

Front-End Usage Guidelines 21

The pfe systems ([pfe1-12]) have a 1 GigE connection, which
can be saturated by a single secure copy (scp). You will see
bad performance whenever more than one file transfer is
happening. Use of bridge1 and bridge2 for file transfers is
strongly recommended.

File transfers from the compute nodes to Lou must go through pfe[1-12] or
bridge[1,2] first, although going through bridge[1,2] is preferred for performance
consideration. See Transferring Files from the Pleiades Compute Nodes to Lou for
more information.

When sending data to Lou[1-2], please keep your largest individual file size under 1
TB, as large files will keep all of the tape drives busy, preventing other file restores
and backups. To prevent the filesystems on Lou[1-2] from filling up, please limit total
data transfers to 1 TB and then wait an hour before continuing. This allows the tape
drives to write the data to tape.

Additional restrictions apply to using these front-end systems:

No MPI jobs are allowed to run on pfe[1-12], bridge[1,2]1.

A job on pfe[1-12] should not use more than 8 GB. When it does, a courtesy email is
sent to the owner of the job.

2.

A job on bridge[1,2] should not use more than 56 GB. When it does, a courtesy email
is sent to the owner of the job.

3.

Pleiades Front-End Usage Guidelines 22

Columbia Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end system, cfe2, provide an environment that allows users to get quick
turnaround while performing the following: file editing; file management; short debugging
and testing sessions; and batch job submission to the compute systems.

Running long and/or large (in terms of memory and/or number of processors) debugging or
production jobs interactively or in the background of cfe2 is considered to be inconsiderate
behavior to the rest of the user community. If you need help submitting such jobs to the
batch systems, please contact a NAS scientific consultant at (650) 604-4444 or
1-800-331-USER or send e-mail to: support@nas.nasa.gov

Jobs that cause significant impact on the system load of the Columbia front-end machine
(cfe2) are candidates for removal in order to bring the front-end systems back to a normal
and smooth environment for all users. A cron job regularly monitors the system load and
determines if job removal is necessary. The criteria for job removal are described below.
Owners of any removed jobs will receive a notification e-mail.

To be eligible for removal, the number of processors a front-end interactive job uses
can be one (1) or more. Exceptions to this are those programs, utilities, etc. common
to users and/or NASA missions that are listed in an "exception file". Examples of
these would be:

bash cp csh emacs gzip rsync scp sftp sh ssh tar tcsh

Users can submit program names to be added to this exception file by mailing
requests to: support@nas.nasa.gov

1.

For qualifying processes, the CPU time usage of each process in a job has, on the
average, exceeded a threshold defined as:

(20 min x 8 / number of processes for the job)

That is, a baseline for removal is a job with 8 processors running for more than 20
minutes. The maximum amount of time allowed for each processor in a job is scaled
using the formula:

20 min x 8 cpu / number-of-processes

Therefore, the following variations are possible:

160 minutes = (20 * 8) / 1 cpu♦

2.

Columbia Front-End Usage Guidelines 23

80 minutes = (20 * 8) / 2 cpu♦
40 minutes = (20 * 8) / 4 cpu♦
20 minutes = (20 * 8) / 8 cpu♦
10 minutes = (20 * 8) / 16 cpu♦
5 minutes = (20 * 8) / 32 cpu♦
2.5 minutes = (20 * 8) / 64 cpu♦

The conditions of removal are subject to change, when necessary.

Columbia Front-End Usage Guidelines 24

PBS on Pleiades

Overview

Overview

On Pleiades, PBS (version 10.4) is used to manage batch jobs that run on the compute
nodes (3 different processor types, 9,984 nodes and 91,136 cores in total). PBS features
that are common to all NAS systems are described in other articles. Read the following
articles for Pleiades-specific PBS information:

queue structure•

resource request examples•
default variables set by PBS•
sample PBS scripts•

PBS on Pleiades 25

http://www.nas.nasa.gov/kb/Queue-Structure_192.html
http://www.nas.nasa.gov/kb/Resources-Request-Examples_188.html
http://www.nas.nasa.gov/kb/Default-Variables-Set-by-PBS_189.html
http://www.nas.nasa.gov/kb/Sample-PBS-Script-for-Pleiades_190.html

Queue Structure

Users should be aware of the PBS queue structure. To find the maximum and default
NCPUS (number of CPUs), the maximum and default wall time, the priority of the queue,
and whether the queue is disabled or stopped, use the command:

%qstat -Q
This command also provides statistics of jobs in the states of queued (Q), held (H), running
(R), or exiting (E).

Note that the queue structure will change from time to time. Below is a snapshot of the
output from this command on June 16, 2011.

%qstat -Q
Queue Ncpus/ Time/ State counts
name max/def max/def jm T/_Q/H/W/__R/E/B pr Info
======== =====/=== ======/===== == ================ === ========
normal --/ 8 08:00/01:00 -- 0/20/4/0/_60/0/0 0
debug 1025/ 8 02:00/00:30 -- 0/_3/0/0/__4/0/0 15
low --/ 8 04:00/00:30 -- 0/_0/0/0/__0/0/0 -10
long 8192/ 8 120:00/01:00 -- 0/_8/1/0/206/0/0 0
route --/ 8 --/ -- -- 0/_0/0/0/__0/0/0 0
idle --/ -- --/ -- -- 0/_0/0/0/__0/0/0 0 disabled
alphatst --/ -- 120:00/01:00 -- 0/_0/0/0/__0/0/0 0
ded_time --/ -- --/01:00 -- 0/_0/0/0/__0/0/0 0
devel 4800/ 1 02:00/ -- -- 0/_1/0/0/__5/0/0 0
wide --/ -- 120:00/01:00 -- 0/_1/0/0/__0/0/0 45 disabled
testing --/ -- --/00:30 -- 0/_0/0/0/__0/0/0 0
somd_spl --/ 8 240:00/01:00 -- 0/_0/0/0/__2/0/0 25
armd_spl 4900/ 8 120:00/01:00 10 0/_0/0/0/__0/0/0 15
normal_N --/ 8 120:00/01:00 -- 0/_5/0/0/_10/0/0 0
rtf --/ 8 --/01:00 -- 0/_0/0/0/__0/0/0 65
dpr --/ 8 --/00:10 -- 0/_0/0/0/__0/0/0 0
normal_W --/ 8 120:00/01:00 -- 0/60/5/0/_18/0/0 0
S1848368 744/ 1 04:00/ -- -- 0/_0/0/0/__0/0/0 0
kepler --/ 8 120:00/01:00 -- 0/12/0/0/_33/0/0 20
diags --/ -- 120:00/01:00 -- 0/_0/0/0/__0/0/0 0

The devel queue on Pleiades is served by pbspl3 (a non-default PBS server). The devel
queue requires pbspl3 to be included in the syntax for qsub, qstat, and qdel. For more
information, read the article Pleiades devel Queue.
To view more information about each queue, use:

%qstat -fQ queue_name
In the output of this command, you will find additional information such as:

acl_groups
Lists all GIDs that are allowed to run in the queue.
For the normal, debug, long, low and wide queues, all GIDs should be included.
Special queues, such as esmd_spl, armd_spl, somd_spl, clv_spl, etc., typically allow

Queue Structure 26

http://www.nas.nasa.gov/hecc/support/kb/entry/290

a few GIDs only.

default_chunk.model
Specifies the default processor model, if you do not specify the processor model
yourself.
All queues, except normal_N and normal_W, default to using nodes with Harpertown
model processors.

resources_min.ncpus
If defined, specifies the minimum NCPUs required for the queue.
The wide queue requires using a minimum of 1024 CPUs.

max_user_run
If defined, specifies the maximum number of jobs each user is allowed to run in the
queue.
For the normal queue, it is set at 10. For the debug queue, it is set at 2.

The normal_N and normal_W queues will be removed in the near
future. To request using the Nehalem-EP or Westmere nodes, use
"model=neh" or "model=wes" attribute in your resource_list. To
explicitly request Harpertown nodes, use "model=har". You can apply
the model attribute to any queue.

For example:

#PBS -q long
#PBS -l select=1:ncpus=12:model=wes

Queue Structure 27

Mission Shares Policy on Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

Mission Directorate shares have been implemented on Pleiades since Feb. 10, 2009.
Implementing shares guarantees that each Mission Directorate gets its fair share of
resources.

The share to which a job is assigned is based on the GID used by the job. Once all the
cores within a Mission Directorate's share have been assigned, other jobs assigned to that
share must wait, even if cores are available in a different Mission Directorate's share, with
the following exception:

When a Mission Directorate is not using all of its cores, other Mission Directorates can
borrow those cores, but only for jobs that will finish within 4 hours. When part of the
resource is unavailable, the total number of cores decreases, and each Mission Directorate
loses a proportionate number of cores.

You can display the share distribution by adding the "-W shares=-" option to the qstat
command. For example:

%qstat -W shares=-

Group Share% Use% Share Exempt Use Avail Borrowed Ratio Waiting
------- ------ ---- ------ ------ ----- ------ -------- ----- -------
Overall 100 0 159748 0 960 158788 0 0.01 960
 ARMD 24 18 38109 0 29680 8429 0 0.78 22512
 HEOMD 23 21 36521 0 34312 2209 0 0.94 28416
 SMD 51 50 80981 0 80968 13 0 1.00 113920
 NAS 2 0 3175 0 0 3175 0 0.00 20240

Mission shares are calculated by combining the mission's HECC share of the shared assets
combined with the mission-specific assets. The mission shares on Oct 3, 2011 are shown in
the second column of the above display. The amount of resources used and borrowed by
each mission and resources each mission is waiting for are also displayed.

An in-house utility, qs, provide similar information with details that break the resources into
the Harpertown, Nehalem-EP and Westmere-EP processor types and is available at
/u/scicon/tools/bin/qs.

The -h option of qs provides instructions on how to use it:

% /u/scicon/tools/bin/qs -h

Mission Shares Policy on Pleiades 28

usage: qs [-u] [-n N] [-b] [-p] [-d] [-r] [-f M,N] [-q N] [-t] [-v] [-h] [--file f]

 -u : show used resources only; don't show queued jobs

 -n N : show time remaining before N nodes are free

 -b : order segments in bars to help understand borrowing

 -p : plain output: i.e. no colors or highlights

 -d : darker colored resource bars (for a light background)

 -r : use Reverse video for displaying resource bars

 -f M,N : highlight nodes for jobs that finish in <= M minutes

 and <= N minutes [default M=60,N=240]

 (0 turns off highlighting)

 -q N : highlight nodes for jobs queued in last N minutes [3]

 (0 turns off highlighting)

 -t : show time remaining & nodes used for each running job

 --file f : reserved for debugging

 -v : (verbose) provide explanation of display elements

 -h : provide this message

Here is a sample output file of qs:

Mission Shares Policy on Pleiades 29

Mission Shares Policy on Pleiades 30

Resources Request Examples

Since Pleiades consists of three different processor types, Harpertown, Nehalem-EP and
Westmere-EP, keep the following in mind when requesting PBS resources for your job:

Starting May 1, 2011, charging on the usage of the three Pleiades processor types is
based on a common Standard Billing Unit which is on a per-node basis. The SBU
rate for each of the Pleiades processor type is:

Processor Type SBU Rate (per node)
Westmere-EP 1 (12 cores in a node)
Nehalem-EP 0.8 (8 cores in a node)
Harpertown 0.45 (8 cores in a node)

The actural amount of memory per node through PBS is slightly less, 7.6 GB/node
for Harpertown and 22.5 GB/node for Nehalem-EP and Westmere-EP.

Use the "model=[har,neh,wes]" attribute to request the processor type(s) for your
job. If the processor type is not specified in user's PBS resource list, the job is routed
to use the default processor type, Harpertown.

Example 1:

Here are some examples of requesting certain processor models for a 128-process
job:

#PBS -l select=16:ncpus=8:model=har
to run all 8 cores on each of 16 Harpertown nodes

#PBS -l select=32:ncpus=4:model=har
to run on only 4 cores on each of 32 Harpertown nodes
(note: will be charged for 32 nodes = 256 cores)

#PBS -l select=16:ncpus=8:model=neh
to run all 8 cores on each of 16 Nehalem-EP nodes

#PBS -l select=11:ncpus=12:model=wes
to run all 12 cores on each of 11 Westmere-EP nodes
(4 cores in 11th node will go unused)

Note that you can specify both the queue type (-q normal, debug, long, wide, low)
and the processor type (-l model=har,neh,wes). For example:

#PBS -q normal
#PBS -l select=16:ncpus=8:model=neh

If your application can run on any of the three processor types, you may want to
submit your job to a processor type that has more unoccupied nodes by other

•

Resources Request Examples 31

running jobs. This can possibly reduce the wait time of your job. The script
node_stats.sh provides information about the total, used and free nodes for each
processor type. For example:

%/u/scicon/tools/bin/node_stats.sh

 Pleiades Nodes Total: 9394
 Pleiades Nodes Used : 8128
 Pleiades Nodes Free : 1266

 Harpertown Total: 5854 Used: 4878 Free: 976
 Nehalem Total: 1255 Used: 1036 Free: 219
 Westmere Total: 2285 Used: 2214 Free: 71

Currently queued jobs are requesting: 1463 Harpertown, 1767 Nehalem,
2860 Westmere nodes

Add "/u/scicon/tools/bin" to your PATH in .cshrc or other
shell start up scripts to avoid having to type in the complete
path for this tool.
You can also find for each job what processor models are used by looking at the
"Model" field of the output of the command:

%qstat -a -W o=+model

The Harpertown nodes in rack 32 have 16 GB memory/node instead of 8 GB/node.

Example 2:

This example shows a request of 2 nodes with bigmem in rack 32.

#PBS -l select=2:ncpus=8:bigmem=true:model=har

•

For a multi-node PBS job, the NCPUs used in each node can be different. This is
useful for jobs that need more memory for some processes, but less for other
processes. Resource requests can be done in "chunks" for a job with varying NCPUs
per node.

Example 3:

This example shows a request of two chunks of resources. In the first chunk, 1 CPU
in 1 node, and in the second chunk, 8 CPUs in each of three other nodes are
requested:

#PBS -l select=1:ncpus=1+3:ncpus=8

•

Resources Request Examples 32

A PBS job can run across different processor types. This can be useful in two
scenarios:

when you can not find enough free nodes within one model for your job1.
when some of your processes need more memory while others need much
less

2.

This can be accomplished by specifying the resources in "chunks", with one chunk
asking for one processor type while another chunk asking for a different processor
type.

Example 4

Here is an example to request 1 Westmere node (which provides 24 GB/node) and 3
Harpertown nodes (which provides 8 GB/node).

•

#PBS -lplace=scatter:excl:group=model
#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes+3:ncpus=8:mpiprocs=8:model=har

Resources Request Examples 33

Default Variables Set by PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

You can use the "env" command--either in a PBS script or on the command line of a PBS
interactive session--to find out what environment variables are set within a PBS job. In
addition to the PBS_xxxx variables, the following two are useful to know:

NCPUS defaults to number of CPUs that you requested for the node.•

OMP_NUM_THREADS defaults to 1 unless you explicitly set it to a different number.

If your PBS job runs an OpenMP or MPI/OpenMP application, this variable sets the
number of threads in the parallel region.

•

FORT_BUFFERED defaults to 1.

Setting this variable to 1 enables records to be accumulated in the buffer and flushed
to disk later.

•

Default Variables Set by PBS 34

http://www.nas.nasa.gov/kb/PBS-Environment-Variables_178.html

Sample PBS Script for Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

#PBS -S /bin/csh
#PBS -N cfd
This example uses the Harpertown nodes
User job can access ~7.6 GB of memory per Harpertown node.
A memory intensive job that needs more than ~0.9 GB
per process should use less than 8 cores per node
to allow more memory per MPI process. This example
asks for 64 nodes and 4 MPI processes per node.
This request implies 64x4 = 256 MPI processes for the job.
#PBS -l select=64:ncpus=8:mpiprocs=4:model=har
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=a0801
#PBS -m e

Currently, there is no default compiler and MPI library set.
You should load in the version you want.
Currently, MVAPICH or SGI's MPT are available in 64-bit only,
you should use a 64-bit version of the compiler.

module load comp-intel/11.1.046
module load mpi-sgi/mpt.2.04.10789

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

use of dplace to pin processes to processors may improve performance
Here you request to pin processes to processors 2, 3, 6, 7 of each node.
This helps for using the Harpertown nodes, but not for Nehalem-EP or
Westmere-EP nodes

The resource request of select=64 and mpiprocs=4 implies
that you want to have 256 MPI processes in total.
If this is correct, you can omit the -np 256 for mpiexec
that you might have used before.

mpiexec dplace -s1 -c2,3,6,7 ./grinder < run_input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool,
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

Sample PBS Script for Pleiades 35

-end of script-

Sample PBS Script for Pleiades 36

Pleiades devel Queue

NAS provides a special devel queue that provides faster turnaround when doing
development work.

Currently, 512 Westmere nodes are reserved for the Pleiades devel queue, 24x7. The
maximum wall-time allowed is 2:00:00 and the maximum NCPUS is 4800. Each user is
allowed to have only one job running in the devel queue at any one time.

To improve PBS job scheduling response time, the devel queue and its resources (for
example, nodes) have been moved to a second PBS server (pbspl3). With this move, users
must specify the server name for jobs managed by pbspl3 with qsub, qstat, and qdel if the
command is launched from a Pleiades front-end node (pfe[1-12] or bridge[1-4]). For
example:

pfe1% qsub -q devel@pbspl3 job_script
1234.pbspl3.nas.nasa.gov

pfe1% qstat devel@pbspl3

pfe1% qstat -a @pbspl3

pfe1% qstat -u zsmith @pbspl3

pfe1% qstat 1234.pbspl3

pfe1% qdel 1234.pbspl3

Alternatively, if you set the environment variable PBS_DEFAULT to pbspl3, you can skip
pbspl3 in your qsub, qstat, qdel commands. For example (in csh):

pfe1% setenv PBS_DEFAULT pbspl3

pfe1% qsub -q devel job_script
1234.pbspl3.nas.nasa.gov

pfe1% qstat devel

pfe1% qstat -a

pfe1% qstat -u zsmith

pfe1% qstat 1234

pfe1% qdel 1234

Use the csh command unsetenv PBS_DEFAULT to return to using the default PBS server,
pbspl1.

Note that the changes described here do not apply to jobs submitted to the other queues

Pleiades devel Queue 37

(normal, long, debug, and all special queues) served by the default server, pbspl1.

To see all jobs you have submitted to pbspl1 or pbspl3 (using username zsmith in the
example below), type the following:

pfe1% qstat @pbspl1 @pbspl3 -W combine -u zsmith

Pleiades devel Queue 38

PBS on Columbia

Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Columbia, PBS (version 9.2) is used to manage batch jobs that run on the four compute
systems (Columbia21-24). PBS features that are common to all NAS systems are
described in other articles. Read the following articles for Columbia-specific PBS
information:

queue structure•

resource request examples•
default variables set by PBS•
sample PBS scripts•

PBS on Columbia 39

http://www.nas.nasa.gov/kb/Queue-Structure_192.html
http://www.nas.nasa.gov/kb/Resources-Request-Examples_194.html
http://www.nas.nasa.gov/kb/Default-Variables-Set-by-PBS_195.html
http://www.nas.nasa.gov/kb/Sample-PBS-Script-for-Columbia_196.html

Resources Request Examples

DRAFT

This article is being reviewed for completeness and technical accuracy.

All of the Columbia compute engines, Columbia21-24, are single system image Altix 4700
systems:

Columbia21 (508 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia22 (2044 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)

Here are a few examples of requesting resources on Columbia:

Example 1:

If your job needs fewer than 508 CPUs and you do not care which Columbia system to run
your job on, simply use ncpus to specify the number of CPUs that you want for your job. For
example:

#PBS -l ncpus=256
Example 2:

If you specify both the ncpus and mem for your job, PBS will make sure that your job is
allocated enough resources to satisfy both ncpus and mem. For example, if you request 4
CPUs and 14 GB of memory, your job will be allocated 8 CPUs and 14.4 GB because the
amount of memory associated with 4 CPUs is not enough to satisfy your memory request.

#PBS -l ncpus=4,mem=14GB
Example 3:

If you want your job to run on a specific Columbia machine, for example, Columbia22 with
256 CPUs, use

#PBS -l select=host=columbia22:ncpus=256

Note that the ncpus request must appear with the select=host request and must not be
present as a separate request either on the qsub command line or in the PBS script.
Example 4:

If you ever need to run a job across two Columbia systems, for example, 508 CPUs on one
Columbia and another 508 CPUs on another, use

Resources Request Examples 40

#PBS -l select=2:ncpus=508,place=scatter

Resources Request Examples 41

Default Variables Set by PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

You can use the "env" command--either in a PBS script or from the command line of an
interactive PBS session--to find out what environment variables are set within a PBS job. In
addition to the PBS_xxxx variables, the following ones are useful to know.

NCPUS defaults to number of CPUs that you requested.•

OMP_NUM_THREADS defaults to 1 unless you explicitly set it to a different number.

If your PBS job runs an OpenMP or MPI/OpenMP application, this variable sets the
number of threads in the parallel region.

•

OMP_DYNAMIC defaults to false.

If your PBS job runs an OpenMP application, this disables dynamic adjustment of the
number of threads available for execution of parallel regions.

•

MPI_DSM_DISTRIBUTE defaults to true.

If your PBS job runs an MPI application, this ensures that each MPI process gets a
unique CPU and physical memory on the node with which that CPU ist is associated.

•

FORT_BUFFERED defaults to 1.

Setting this variable to 1 enables records to be accumulated in the buffer and flushed
to disk later.

•

Default Variables Set by PBS 42

http://www.nas.nasa.gov/kb/PBS-Environment-Variables_178.html

Sample PBS Script for Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

#PBS -S /bin/csh
#PBS -N cfd
#PBS -l ncpus=4
#PBS -l mem=7776MB
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=g12345
#PBS -m e

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

For MPI jobs, there is an SGI MPT module loaded by default, unless you
modify your shell start up script to unload it or switch to a different
version. You can use either mpiexec or mpirun to start your job.

mpiexec -np 4 ./a.out < input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

-end of script-

Sample PBS Script for Columbia 43

Troubleshooting PBS Jobs

Common Reasons for Being Unable to Submit Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

There are several common reasons why you might not be able to successfully submit a job
to PBS:

Resource request exceeds resource limits

qsub: Job exceeds queue resource limits

Reduce your resource request to below the limit or use a different queue.

•

AUID or GID not authorized to use a specific queue

If you get the following message after submitting a PBS job:

qsub: Unauthorized Request

it is possible that you tried submitting to a queue which is accessible only to certain
groups or users. You can check the "qstat -fQ" output and see if there is an
acl_groups or a acl_users list. If your group or username is not in the lists, you will
have to submit to a different queue."

•

AUID not authorized to use a specific GID

If you get the following message after submitting a PBS job:

qsub: Bad GID for job execution

it is possible that your AUID has not been added to use allocations under a specific
GID. Please consult with the principal investigator of that GID and ask him/her to
submit a request to support@nas.nasa.gov to add your AUID under that GID.

•

Queue is disabled

If you get the following message after submitting a PBS job

qsub: Queue is not enabled

you should submit to a different queue which is enabled.

•

Troubleshooting PBS Jobs 44

Not enough allocation left

An automated script is used to check if a GID is over its allocation everyday. If it
does, that GID is removed from PBS access control list and users of that GID will not
be able to submit jobs.

Users can check the amount of allocations remaining using the acct_ytd command.
In addition, if you see in your PBS output file some message regarding your GID
allocation usage is near its limit or is already over, ask your PI to request for more
allocation.

•

Common Reasons for Being Unable to Submit Jobs 45

Common Reasons Why Jobs Won't Start

Once you've successfully submitted your job, there may be several common reasons why it
might not run:

The job is waiting for resources

Your job may be waiting for resources, due to one of the following:

All resources are tied up with running jobs, and no other jobs can be started.
♦

PBS may have enough resources to run your job, however, there is another
higher priority job that needs more resources than what is available, and PBS
is draining the system (including not running any new jobs) in order to
accommodate the high-priority job.

♦

Some users submit too many jobs at once (e.g., more than 100), and the PBS
scheduler becomes swamped with sorting jobs and is not able to start jobs
effectively.

♦

In the case when you request your job to run on a specific node or group of
nodes, your job is likely to wait in the queue longer than if you do not request
specific nodes.

♦

•

Your mission share has run out

Your mission shares have been used up. The available resources that you saw
belong to other missions, which can be borrowed. However, your job may have
requested a wall-time that is too long (more than 4 hours for Pleiades), which
prevents your job from borrowing the resources.

See also, Mission Shares Policy on Pleiades.

•

The system is going into dedicated time

When dedicated time (DED) is scheduled for hardware and/or software work, the
PBS scheduler will not start a job if the projected end time runs past the beginning of
the DED time. If you are able to reduce the requested wall-time so that your job will
finish running prior to DED time, then your job can then be considered for running.
To change the wall-time request for your job, follow the example below :

%qalter -l walltime=hh:mm:ss jobid

•

Scheduling is turned off

Sometimes job scheduling is turned off by control room staff or a system
administrator. This is usually done when there are system or PBS issues that need
to be resolved before jobs can be scheduled to run. When this happens, you should
see the following message near the beginning of the "qstat -au your_userid" output.

+++Scheduling turned off.

•

Your job has been placed in "H" mode•

Common Reasons Why Jobs Won't Start 46

A job can be placed on hold either by the job owner or by someone who has root
privilege, such as a system administrator. If your job has been placed on hold by a
system administrator, you should get an email explaining the reason for the hold.
Your home filesystem or default /nobackup filesystem is down

When a PBS job starts, the PBS prologue checks to determine whether your home
filesystem and default /nobackup are available before executing the commands in
your script. If your default /nobackup filesystem is down, PBS can not run your job
and it will put the job back in the queue. If your PBS job does not need any file in that
filesystem, you can tell PBS that your job will not use the default /nobackup so that
your job can start running. For example, if your default is /nobackupp10 (for
Pleiades), you can add the following in your PBS script:

#PBS -l /nobackupp10=0

•

Common Reasons Why Jobs Won't Start 47

Using pdsh_gdb for Debugging Pleiades PBS Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 48

Effective Use of PBS

Streamlining File Transfers from Pleiades Compute Nodes
to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Effective Use of PBS 49

Avoiding Job Failure from Overfilling /PBS/spool

Before a PBS job is completed, its error and output files are kept in the /PBS/spool directory
of the first node of your PBS job. The space under /PBS/spool is limited, however, and
when it fills up, any job that tries to write to /PBS/spool may die. To prevent this, you should
not write large amount of contents in the PBS output/error files.

If your executable normally produces a lot of output to the screen, you should redirect its
output in your PBS script. For example:

#PBS ...
mpiexec a.out > output

To see the contents of your PBS output/error files before your job completes, follow the two
steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the content of these files using vi or view.

2.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

Avoiding Job Failure from Overfilling /PBS/spool 50

Running Multiple Serial Jobs to Reduce Walltime

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

Running Multiple Serial Jobs to Reduce Walltime 51

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

Running Multiple Serial Jobs to Reduce Walltime 52

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Walltime 53

Checking the Time Remaining in a PBS Job from a Fortran
Code

DRAFT

This article is being reviewed for completeness and technical accuracy.

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example,

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable

 external pbs_time_left
 integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed

 call pbs_time_left(seconds_left)
 print*,"Seconds remaining in PBS job:",seconds_left

2.

Checking the Time Remaining in a PBS Job from a Fortran Code 54

 The return value from pbs_time_left is only accurate to within a minute or two.

Compile your modified code and link with the above library using, for example

LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 55

	Table of Contents
	Running Jobs with PBS
	Portable Batch System (PBS): Overview
	Job Accounting
	Job Accounting Utilities
	Multiple GIDs and Charging to a specific GID
	Commonly Used PBS Commands
	Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line
	New Features in PBS
	Checkpointing and Restart
	PBS Environment Variables
	PBS Scheduling Policy
	PBS exit codes

	Front-End Usage Guidelines
	Pleiades Front-End Usage Guidelines
	Columbia Front-End Usage Guidelines

	PBS on Pleiades
	Overview
	Queue Structure
	Mission Shares Policy on Pleiades
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Pleiades
	Pleiades devel Queue

	PBS on Columbia
	Overview
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Columbia

	Troubleshooting PBS Jobs
	Common Reasons for Being Unable to Submit Jobs
	Common Reasons Why Jobs Won't Start
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Effective Use of PBS
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Walltime
	Checking the Time Remaining in a PBS Job from a Fortran Code

